Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo.

2014 
To address the obstacles facing cancer chemotherapeutics, including toxicity, side effects, water insolubility, and lack of tumor selectivity, a novel stimuli-responsive drug-delivery system was developed based on paclitaxel-loaded poly(ethylene glycol)-disulfide-paclitaxel conjugate nanoparticles (PEG-SS-PTX/PTX NPs). The formulation emphasizes several benefits, including polymer–drug conjugates/prodrugs, self-assembled NPs, high drug content, redox responsiveness, and programmed drug release. The PTX-loaded, self-assembled NPs, with a uniform size of 103 nm, characterized by DLS, TEM, XRD, DSC, and 1H NMR, exhibited excellent drug-loading capacity (15.7%) and entrapment efficiency (93.3%). PEG-SS-PTX/PTX NPs were relatively stable under normal conditions but disassembled quickly under reductive conditions, as indicated by their triggered-aggregation phenomena and drug-release profile in the presence of dithiothreitol (DTT), a reducing agent. Additionally, by taking advantage of the difference in the dru...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    64
    Citations
    NaN
    KQI
    []