Dynamic histone acetylation in floral volatile synthesis and emission in petunia flowers.

2021 
Biosynthesis of secondary metabolites relies on primary metabolic pathways to provide precursors, energy, and cofactors, thus requiring coordinated regulation of primary and secondary metabolic networks. However, to date it remains largely unknown how this coordination is achieved. Using Petunia hybrida flowers, which emit high levels of phenylpropanoid/benzenoid volatile organic compounds (VOCs), we uncovered genome-wide dynamic deposition of histone H3 lysine 9 acetylation (H3K9ac) during anthesis as an underlying mechanism to coordinate primary and secondary metabolic networks. The observed epigenome reprogramming is accompanied by transcriptional activation, at gene loci involved in primary metabolic pathways that provide precursor phenylalanine, as well as secondary metabolic pathways to produce volatile compounds. We also observed transcriptional repression among genes involved in alternative phenylpropanoid branches that compete for metabolic precursors. We show that GNAT family histone acetyltransferase(s) (HATs) are required for the expression of genes involved in VOC biosynthesis and emission, by using chemical inhibitors of HATs, and by knocking down a specific HAT, ELP3, through transient RNAi. Together, our study supports that chromatin level regulatory mechanisms may play an essential role in activating primary and secondary metabolic pathways to regulate VOC synthesis in petunia flowers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    116
    References
    3
    Citations
    NaN
    KQI
    []