Effects of reduced precipitation on litter decomposition in an evergreen broad-leaved forest in western China

2018 
Abstract Litter decomposition is a fundamental process of biogeochemical cycles and plays a critical role in regulating carbon (C) and nutrient mineralization in terrestrial ecosystems. Examining responses of litter decomposition to altered precipitation is crucial to understand terrestrial C dynamics and its feedback to climate change. To understand the effects of reduced precipitation on litter decomposition, a two-year throughfall reduction experiment was carried out in a natural evergreen broad-leaved forest in western China. Five throughfall reduction levels were investigated: control without throughfall reduction (Ctr), 5% (W1), 10% (W2), 20% (W3) and 50% throughfall reduction (W4). Throughfall reduction significantly reduced soil moisture, which was most pronounced in W3 and W4 treatments, and this was associated by significantly reduced cumulative litter mass loss and lower decomposition constants. Also, throughfall reduction significantly altered litter C, N and P dynamics. In particular in W2, W3 and W4 treatments the release of C and N was significantly reduced, whereas in W2 and W3 the immobilization of P was increased. Overall, the results suggest that future decrease in precipitation will suppress litter decomposition, whereas microbial P limitation in litter may be aggravated in broad-leaved forest ecosystems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    10
    Citations
    NaN
    KQI
    []