Transcriptomic analysis of salt tolerance-associated genes and diversity analysis using indel markers in yardlong bean (Vigna unguiculata ssp. sesquipedialis).

2021 
BACKGROUND High salinity is a devastating abiotic stresses for crops. To understand the molecular basis of salinity stress in yardlong bean (Vigna unguiculata ssp. sesquipedalis), and to develop robust markers for improving this trait in germplasm, whole transcriptome RNA sequencing (RNA-seq) was conducted to compare the salt-tolerant variety Suzi 41 and salt-sensitive variety Sujiang 1419 under normal and salt stress conditions. RESULTS Compared with controls, 417 differentially expressed genes (DEGs) were identified under exposure to high salinity, including 42 up- and 11 down-regulated DEGs in salt-tolerant Suzi 41 and 186 up- and 197 down-regulated genes in salt-sensitive Sujiang 1419, validated by qRT-PCR. DEGs were enriched in "Glycolysis/Gluconeogenesis" (ko00010), "Cutin, suberine and wax biosynthesis" (ko00073), and "phenylpropanoid biosynthesis" (ko00940) in Sujiang 1419, although "cysteine/methionine metabolism" (ko00270) was the only pathway significantly enriched in salt-tolerant Suzi 41. Notably, AP2/ERF, LR48, WRKY, and bHLH family transcription factors (TFs) were up-regulated under high salt conditions. Genetic diversity analysis of 84 yardlong bean accessions using 26 InDel markers developed here could distinguish salt-tolerant and salt-sensitive varieties. CONCLUSIONS These findings show a limited set of DEGs, primarily TFs, respond to salinity stress in V. unguiculata, and that these InDels associated with salt-inducible loci are reliable for diversity analysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    0
    Citations
    NaN
    KQI
    []