Wild bee community change over a 26-year chronosequence of restored tallgrass prairie

2017 
Restoration efforts often focus on plants, but additionally require the establishment and long-term persistence of diverse groups of nontarget organisms, such as bees, for important ecosystem functions and meeting restoration goals. We investigated long-term patterns in the response of bees to habitat restoration by sampling bee communities along a 26-year chronosequence of restored tallgrass prairie in north-central Illinois, U.S.A. Specifically, we examined how bee communities changed over time since restoration in terms of (1) abundance and richness, (2) community composition, and (3) the two components of beta diversity, one-to-one species replacement, and changes in species richness. Bee abundance and raw richness increased with restoration age from the low level of the pre-restoration (agricultural) sites to the target level of the remnant prairie within the first 2–3 years after restoration, and these high levels were maintained throughout the entire restoration chronosequence. Bee community composition of the youngest restored sites differed from that of prairie remnants, but 5–7 years post-restoration the community composition of restored prairie converged with that of remnants. Landscape context, particularly nearby wooded land, was found to affect abundance, rarefied richness, and community composition. Partitioning overall beta diversity between sites into species replacement and richness effects revealed that the main driver of community change over time was the gradual accumulation of species, rather than one-to-one species replacement. At the spatial and temporal scales we studied, we conclude that prairie restoration efforts targeting plants also successfully restore bee communities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    92
    References
    37
    Citations
    NaN
    KQI
    []