Enhanced hydrogen desorption properties of magnesium hydride by coupling non-metal doping and nano-confinement

2015 
Magnesium hydride (MgH2) offers excellent capacity to store hydrogen, but it suffers from the high desorption temperature (>283 °C for starting release hydrogen). In this work, we calculated the hydrogen desorption energy of Mg76H152 clusters with/without non-metal dopants by density functional theory method. Phosphorus (P), as identified as the best dopant, can reduce the reaction energy for releasing one hydrogen molecule from 0.75 eV (bulk MgH2) to 0.20 eV. Inspired by the calculation, P-doped ordered mesoporous carbon (CMK-3) was synthesized by one-step method and employed as the scaffold for loading MgH2 nanoparticles, forming MgH2@P/CMK-3. Element analysis shows that phosphorus dopants have been incorporated into the CMK-3 scaffold and magnesium and phosphorus elements are well-distributed in carbon scaffold hosts. Tests of hydrogen desorption confirmed that P-doping can remarkably enhance the hydrogen release properties of nanoconfined MgH2 at low temperature, specifically ∼1.5 wt. % H2 released fr...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    29
    Citations
    NaN
    KQI
    []