Regional ventilation distribution in healthy lungs: can reference values be established for electrical impedance tomography parameters?

2021 
Background Although electrical impedance tomography (EIT) is widely used for monitoring regional ventilation distribution, reference values have yet to be established for clinical use. The present study aimed to evaluate the feasibility of creating reference values for standard EIT parameters for potential clinical application. Methods A total of 75 participants with healthy lungs were included in this prospective study (male:female, 48:27; age, 34±14 years; height, 172±7 cm; weight, 73±12 kg). The subjects were examined during spontaneous breathing in the supine position. EIT measurements were performed at the level of the 4th intercostal space. Commonly used EIT-based parameters, including the center of ventilation (CoV), dorsal and most dorsal fractions of ventilation distribution (TVD and TVROI4 respectively), global inhomogeneity (GI) index, and standard deviation of regional ventilation delay index (RVDSD) were calculated. Results Following outlier detection, EIT data from 71 subjects were finally evaluated. The values of the evaluated parameters were: CoV, 48.7%±1.7%; TVD, 48.1%±5.4%; TVROI4, 7.1%±1.8%; GI, 0.49±0.04; and RVDSD, 7.0±2.0. The coefficients of variation for CoV and GI were low (0.03 and 0.07, respectively), but those for TVROI4 and RVDSD were comparatively high (0.26 and 0.28, respectively). None of the evaluated parameters showed a significant correlation with age. The GI index showed a weak but significant correlation with body mass index (R=0.29, P=0.01). The RVDSD was slightly higher in males than in females. Conclusions Our study indicated that CoV and GI were stable parameters with small coefficients of variation in participants with healthy lungs. The creation of EIT parameter reference values for setting treatment targets may be feasible.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    2
    Citations
    NaN
    KQI
    []