Roton pair density wave and unconventional strong-coupling superconductivity in a topological kagome metal.

2021 
The recently discovered family of vanadium-based kagome metals with topological band structures offer a new opportunity to study frustrated, correlated and topological quantum states. These layered compounds are nonmagnetic and undergo charge density wave (CDW) transitions before developing superconductivity at low temperatures. Here we report the observation of unconventional superconductivity and pair density wave (PDW) in the vanadium-based kagome lattice CsV3Sb5 using scanning tunneling microscope/spectroscopy (STM/STS) and Josephson STS. The differential conductance exhibits a V-shaped pairing gap about 0.5 meV below a transition temperature Tc about 2.3 K. Superconducting phase coherence is observed by Josephson effect and Cooper-pair tunneling to a superconducting tip. We find that CsV3Sb5 is a strong-coupling superconductor (2delta/kBTc about 5) and coexists with 4a0 unidirectional and 2x2 charge order. Remarkably, we discover a 4a0/3 bidirectional PDW accompanied by spatial modulations of the coherence peak and gap-depth in the tunneling conductance. We term the latter as a roton-PDW that can produce a commensurate vortex-antivortex lattice to account for the observed conductance modulations. Above Tc, we observe long-range ordered 4a0 unidirectional and 2a0 bidirectional CDW and a large V-shaped pseudogap in the density of state. Electron-phonon calculations attribute the 2x2 CDW to phonon softening induced structural reconstruction, but the phonon mediated pairing cannot describe the observed strong-coupling superconductor. Our findings show that electron correlations in the charge sector can drive the 4a0 unidirectional CDW, unconventional superconductivity, and roton-PDW with striking analogies to the phenomenology of cuprate high-Tc superconductors, and provide the groundwork for understanding their microscopic origins in the vanadium-based kagome superconductors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    81
    References
    46
    Citations
    NaN
    KQI
    []