BIOCHEMICAL ANALYSIS OF THE SACCHAROMYCES CEREVISIAE SEC18 GENE PRODUCT : IMPLICATIONS FOR THE MOLECULAR MECHANISM OF MEMBRANE FUSION

1999 
The SEC18 gene product is 48% identical to mammalian NSF (N-ethylmaleimide-sensitive fusion protein), and both proteins encode cytoplasmic ATPases which are essential for membrane traffic in yeast and mammalian cells, respectively. A wealth of biochemical analysis has led to the description of a model for the action of NSF; through its interaction with SNAPs (soluble NSF attachment proteins), NSF can associate with SNAP receptors (SNAREs) on intracellular membranes, forming 20S complexes. SNAPs then stimulate the intrinsic ATPase activity of NSF, leading to the disassembly of the 20S complex, which is essential for subsequent membrane fusion. Although this model is based almost entirely on in vitro studies of the original clones of NSF and α-SNAP, it is nevertheless widely assumed that this mechanism of membrane fusion is conserved in all eukaryotic cells. If so, the crucial biochemical properties of NSF and SNAPs should be shared by their yeast homologues, Sec18p and Sec17p. Using purified recombinant pr...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    25
    Citations
    NaN
    KQI
    []