Proposed local diagnostic reference levels in angiography and interventional neuroradiology and a preliminary analysis according to the complexity of the procedures
2012
Abstract The aim of this study was to propose local diagnostic reference levels (DRL) for exposure to radiation during diagnostic procedures and neuroradiological interventions such as cerebral angiography and embolisation of cerebral aneurysms (intra-cranial aneurysms and arteriovenous malformations). Hospitals should adopt the national DRLs for use locally or establish their own DRLs based on local practice, if sufficient local data are available. For this purpose we studied a sample of 113 cerebral angiography procedures and 82 embolisations of cerebral aneurysms. The data recorded included the kerma-area product (KAP), the fluoroscopy time and the number of frames for each procedure: third quartiles from the total dosimetric databank were calculated and proposed as provisional local DRL. Since the complexity of a procedure must be taken into account when evaluating the radiation dose, in the case of embolisation of aneurysms (intra-cranial), in this initial phase we assessed whether the complexity of the embolisation procedure is related to the size of the aneurysm and/or its site. We, therefore, re-calculated the DRL for only intra-cranial aneurysms, leaving aside the arteriovenous malformations. Considering that the DRL calculated for all the therapeutic procedures are similar to those calculated considering only intra-cranial aneurysms, at the moment we propose, besides the DRL for cerebral angiography, a single DRL for all interventional procedures, even when the clinical pictures are very different. Local preliminary DRLs were proposed as follows: 180 Gy cm 2 , 12 min and 317 frames for cerebral angiography and 487 Gy cm 2 , 46 min and 717 frames for interventional procedures (intra-cranial aneurysms and arteriovenous malformations).
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
27
References
34
Citations
NaN
KQI