Evaluation of Size Structure in Freshwater Cyanobacterial Populations: Methods to Quantify Risk Associated with Changes in Biomass and Microcystin Concentrations

2019 
Cyanobacterial populations in surface waters, including drinking water supplies and recreational waters, represent an ever present challenge for resource managers. As communities continuously respond to external and internal processes, dynamic profiles of composition, dominance, growth and toxigenicity emerge. In this study measures of size structure and biomass, quantified using light microscopy and fluorometry, were used to estimate microcystin concentrations through linear regression analysis. Toxigenic profiles using cyanobacterial biomass were developed for lakes dominated by Microcystis spp. and Dolichospermum spp., influenced by both genus-specific pigment concentrations as well as microcystin concentrations. Community composition (Log %MIC) and biomass were used to describe microcystin concentrations in mixed assemblages, where composition was the first input variable. The accessory photopigment phycocyanin was used to describe the linear relationship between the daily growth and net microcystin production rates in the bloom-forming Microcystis spp. samples, suggesting that this size-fractionated sample may provide indications of potential toxigenicity in the whole lake water sample. Future investigations using fluorometric evaluation of cyanobacterial populations could provide additional applications and metrics for use by resource managers to quantify risk association with elevated cyanotoxin concentrations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []