A New Binning Method for Metagenomics by One-Dimensional Cellular Automata

2015 
More and more developed and inexpensive next-generation sequencing (NGS) technologies allow us to extract vast sequence data from a sample containing multiple species. Characterizing the taxonomic diversity for the planet-size data plays an important role in the metagenomic studies, while a crucial step for doing the study is the binning process to group sequence reads from similar species or taxonomic classes. The metagenomic binning remains a challenge work because of not only the various read noises but also the tremendous data volume. In this work, we propose an unsupervised binning method for NGS reads based on the one-dimensional cellular automaton (1D-CA). Our binning method facilities to reduce the memory usage because 1D-CA costs only linear space. Experiments on synthetic dataset exhibit that our method is helpful to identify species of lower abundance compared to the proposed tool.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []