Optical gas sensing properties of nanoporous Nb2O5 films

2015 
Nanoporous Nb2O5 has been previously demonstrated to be a viable electrochromic material with strong intercalation characteristics. Despite showing such promising properties, its potential for optical gas sensing applications, which involves the production of ionic species such as H+, has yet to be explored. Nanoporous Nb2O5 can accommodate a large amount of H+ ions in a process that results in an energy bandgap change of the material which induces an optical response. Here, we demonstrate the optical hydrogen gas (H2) sensing capability of nanoporous anodic Nb2O5 with a large surface-to-volume ratio prepared via a high temperature anodization method. The large active surface area of the film provides enhanced pathways for efficient hydrogen adsorption and dissociation, which are facilitated by a thin layer of Pt catalyst. We show that the process of H2 sensing causes optical modulations that are investigated in terms of response magnitudes and dynamics. The optical modulations induced by the intercalatio...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    51
    Citations
    NaN
    KQI
    []