Joint admission control, cell association, power allocation and throughput maximization in decoupled 5G heterogeneous networks

2020 
Downlink (DL)-uplink (UL) coupled cell association scheme was adopted in 3rd generation (3G) homogeneous network and 4th generation (4G) heterogeneous network (HetNet). In the coupled cell association scheme, a user is associated to single base station (BS) in DL & UL based on the strongest received signal power (SRSP) in DL from a macro base station (MBS) and multiple small base stations (SBS) in HetNet. This is a sub-optimal solution for cell association as most of the users are associated to a MBS due to dominant transmit power and brings challenges like multiple interference issues and imbalanced user traffic load which leads to a degraded throughput in HetNet. In this paper, we investigate downlink uplink decoupled cell association scheme to address these issues and formulate a sum-rate maximization problem in terms of admission control, cell association and power allocation for MBS only, coupled and decoupled HetNet. The formulated optimization problem falls into class of a mixed integer non linear programming (MINLP) problem which is NP-hard and requires exhaustive search to find the optimal solution. However, computational complexity of the exhaustive search increases exponentially with the increase in number of users. Therefore, an outer approximation algorithm (OAA) is proposed as a solution to find near optimal solution with less computation complexity. Extensive simulations work has been done to evaluate the decoupled cell association scheme in HetNet vs the coupled cell association scheme in traditional MBS only and HetNet. Results show the effectiveness of decoupled cell association scheme in terms of KPIs, such as throughput, addressing user traffic load imbalances and number of users attached.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    9
    Citations
    NaN
    KQI
    []