Inhibition of Anti-viral Stress Granule Formation by infectious bronchitis virus endoribonuclease nsp15 Ensures Efficient Virus Replication

2020 
Cytoplasmic stress granules (SGs) are generally triggered by stress-induced translation arrest for storing mRNAs. Recently, it has been shown that SGs exert anti-viral functions due to their involvement in protein synthesis shut off and recruitment of innate immune signaling intermediates. The largest RNA virus, coronavirus, mutates frequently and circulates among animals, imposing great threat to public safety and animal health; however, the significance of SGs in coronavirus infections is largely unknown. Infectious bronchitis virus (IBV) is the first identified coronavirus in 1930s and has been prevalent in poultry farm for many years. In this study, we provide evidence that IBV overcomes the host antiviral response by inhibiting SGs formation via the virus-encoded endoribonuclease nsp15. By immunofluorescence analysis, we observed that IBV infection not only did not trigger SGs formation in approximately 80% of the infected cells, but also impaired the formation of SGs triggered by heat shock, sodium arsenite, or NaCl stimuli. We show that the intrinsic endoribonuclease activity of nsp15 is responsible for the inhibition of SGs formation. In fact, nsp15-defective recombinant IBV (rIBV-nsp15-H238A) greatly induced the formation of SGs, along with accumulation of dsRNA and activation of PKR, whereas wild type IBV failed to do so. Consequently, infection with rIBV-nsp15-H238A triggered transcription of IFN-β which in turn greatly affected recombinant virus replication. Further analysis showed that SGs function as antiviral hub, as demonstrated by the attenuated IRF3-IFN response and increased production of IBV in SG-defective cells. Additional evidence includes the aggregation of PRRs and signaling intermediates to the IBV-induced SGs. Collectively, our data demonstrate that the endoribonuclease nsp15 of IBV suppresses the formation of antiviral hub SGs by regulating the accumulation of viral dsRNA and by antagonizing the activation of PKR, eventually ensuring productive virus replication. We speculate that coronaviruses employ similar mechanisms to antagonize the host anti-viral SGs formation for efficient virus replication, as the endoribonuclease function of nsp15 is conserved in all coronaviruses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    0
    Citations
    NaN
    KQI
    []