Low-energy theory for strained graphene: an approach up to second-order in the strain tensor

2017 
An analytical study of low-energy electronic excited states in an uniformly strained graphene is carried out up to second-order in the strain tensor. We report an new effective Dirac Hamiltonian with an anisotropic Fermi velocity tensor, which reveals the graphene trigonal symmetry being absent in low-energy theories to first-order in the strain tensor. In particular, we demonstrate the dependence of the Dirac-cone elliptical deformation on the stretching direction respect to graphene lattice orientation. We further analytically calculate the optical conductivity tensor of strained graphene and its transmittance for a linearly polarized light with normal incidence. Finally, the obtained analytical expression of the Dirac point shift allows a better determination and understanding of pseudomagnetic fields induced by nonuniform strains.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    0
    Citations
    NaN
    KQI
    []