Timing-driven routing for FPGAs based on Lagrangian relaxation

2002 
As interconnection delay plays an important role in determining circuit performance in FPGAs, timing-driven FPGA routing has received much attention recently. In this paper, we present a new timing-driven routing algorithm for FPGAs. The algorithm finds a routing with minimum critical path delay for a given placed circuit using the Lagrangian relaxation technique. Lagrangian multipliers used to relax timing constraints are updated by subgradient method over iterations. Incorporated into the cost function, these multipliers guide the router to construct routing tree for each net. During routing, the exclusivity constraints on each routing resources are also taken care of to route circuits successfully. Experimental results on benchmark circuits show that our approach outperforms the state-of-the-art VPR router.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []