Kinetic and Physical Characterization of Force Generation in Muscle: A Laser Temperature-Jump and Length-Jump Study on Activated and Contracting Rigor Fibers

1993 
Experiments are presented that probe the mechanism of contraction in normal activated muscle fibers and in heated rigor fibers. In activated fibers we subdivide the partial recovery of isometric tension during the Huxley-Simmons phase 2 into temperature-independent and temperature-dependent steps termed, respectively, phase 2fast and phase 2slow- Evidence is presented to show that phase 2fast arises from the perturbation of a damped elastic element in the cross-bridge and that phase 2slow is the manifestation of an endothermic, order-disorder transition responsible for de novo tension generation. These responses are common to both frog and rabbit fibers. The only difference between animals is that the kinetics of phase 2slow appears to scale with the working temperature of the muscle and not absolute temperature. Rigor fibers heated above the working temperature of the muscle contract. Tension generation is, as with activated fibers, endothermic. Tension transients following a laser temperature-jump of activated and heated rigor fibers are virtually indistinguishable on the basis of either the form or magnitude of the response. In length-jump experiments, tension recovery by heated rigor fibers consists of three exponentials with a tension-dependent rate for the medium speed step. Preliminary data indicate that the rigor cross-bridge operates over a distance of between 13.5 and 18 nm. Collectively, these data imply that tension generation in muscle arises from accessible conformational states in the proteins of the cross-bridge alone. ATP hydrolysis in active fibers and the heating of rigor fibers simply serve to shift these intrinsic conformational equilibria towards tension generation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    4
    Citations
    NaN
    KQI
    []