Influence of different land use types on hydrochemistry and heavy metals in surface water in the lakeshore zone of the Caohai wetland, China

2020 
Abstract In recent years, with the expansion of the Weining county in the northeast of Caohai wetland, the construction of a new port in the north, and the large-scale development of cultivated land in the east, land use patterns in lakeshore areas have changed. These changes have affected the state of lake shores water bodies in complex ways, resulting in varying degrees of local water pollution. To explore the distribution and transformation characteristics of water chemistry and heavy metals in different areas of a water body under the influence of different land uses, especially the interactions between water chemical factors and heavy metals in different areas of a water body, this study used Circos diagrams, originally used in biological genetic analysis, to visualize these interactions. This is the first time that the Circos diagram has been applied to the analysis of environmental interactions. The results showed that there are significant differences in the distribution of water chemical factors and heavy metals in different areas of the Caohai wetland. In particular, Cd is affected by anthropogenic sources. The Cd content is higher in the NCL and UL areas, which are at greater risk from pollution. The factors controlling heavy metal levels in water bodies were different in the different regions. The NCL region was mainly affected by construction excavation ore, UL was mainly affected by man-made industrial inputs, CL was mainly affected by pesticide and fertilizer inputs, and ML and FL were mainly affected by Eh and DO. The PCA results showed that the sources of heavy metals in different types of water bodies in the lakeshore zone were both natural and anthropogenic. Therefore, controlling pollutants, reducing environmental pollution inputs to the lakeshore zone, and strengthening supervision and management near wetlands may be of great significance for handling heavy metal pollution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    10
    Citations
    NaN
    KQI
    []