Reliability Analysis of Pile Foundation Using Soft Computing Techniques: A Comparative Study

2021 
Uncertainty and variability are inherent to pile design and consequently, there have been considerable researches in quantifying the reliability or probability of failure of structures. This paper aims at examining and comparing the applicability and adaptability of Minimax Probability Machine Regression (MPMR), Emotional Neural Network (ENN), Group Method of Data Handling (GMDH), and Adaptive Neuro-Fuzzy Inference System (ANFIS) in the reliability analysis of pile embedded in cohesionless soil and proposes an AI-based prediction method for bearing capacity of pile foundation. To ascertain the homogeneity and distribution of the datasets, Mann–Whitney U (M–W) and Anderson–Darling (AD) tests are carried out, respectively. The performance of the developed soft computing models is ascertained using various statistical parameters. A comparative study is implemented among reliability indices of the proposed models by employing First Order Second Moment Method (FOSM). The results of FOSM showed that the ANFIS approach outperformed other models for reliability analysis of bearing capacity of pile and ENN is the worst performing model. The value of R2 for all the developed models is close to 1. The best RMSE value is achieved for the training phase of the ANFIS model (0 in training and 2.13 in testing) and the poorest for the ENN (2.03 in training and 31.24 in testing) model. Based on the experimental results of reliability indices, the developed ANFIS model is found to be very close to that computed from the original data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    12
    Citations
    NaN
    KQI
    []