Photoprotection of mammalian acid-soluble collagen by cuttlefish sepia melanin in vitro.

1998 
Several important clinical conditions can result in close association between the pigment melanin and dermal collagen. Because melanin and its precursors can be chemically reactive in ground and excited states, it is important to know whether the resulting melanin-collagen interaction results in photoprotection or photoaggression. Acidic and neutral air-saturated collagen suspensions (0.033%) were irradiated with0–2.6 times 104 J/m2 UVC or with0–83 times 104 J/m2 solar-simulating UV radiation (SSR). Photochemical destruction of a photolabile collagen fluorophore (δem 360 nm) and collagen chain degradation were monitored as functions of irradiation time in the presence and absence of added (0–100μg) sepia eumelanin. Melanin retarded collagen photodamage but did not qualitatively alter the fluorescence fading kinetics. Both H202 and 02 can be produced by UV irradiation of eumelanin. Added H202 and K02 destroyed collagen fluorescence and caused 50% chain degradation at ca10–20-fold molar excess. Previous studies have demonstrated that eumelanins efficiently scavenge 02 . We demonstrated that eumelanin also efficiently scavenges H202 as evidenced by its ability to (a) compete with scopoletin for peroxide uptake and (b) directly take up H202 through a dialysis bag. The latter observation suggests that peroxide scavenging could occur in vivo by melanin sequestered in melanophages. Thus, neither UV-generated 02 nor H202 are likely to be present in concentrations high enough to cause measurable collagen damage. Absorption and/or scattering of excitation radiation away from the target chromophore appears to be the primary photoprotection mechanism, although scavenging of active 02 intermediates may play an important, if subtle role.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    10
    Citations
    NaN
    KQI
    []