From Hydrogen Silsesquioxane to Functionalized Silicon Nanocrystals

2017 
Silicon nanocrystals exhibit size-dependent optical and electronic properties that may be exploited for applications ranging from sensors to photovoltaics. In addition, they can be utilized in biological and environmental systems thanks to the nontoxicity of silicon. Synthesis of silicon nanocrystals has been accomplished using a variety of methods. However, creating near monodisperse systems of high purity has been a challenge. The high temperature processing of hydrogen silsesquioxane method of particle synthesis reproducibly provides pure, near monodisperse particles in scalable quantities. These particles can then be liberated using HF etching and functionalized using a variety of methods. This paper outlines our lab procedures for creating silicon nanocrystals, the various functionalization methods and the most commonly used characterization techniques.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    84
    References
    42
    Citations
    NaN
    KQI
    []