FPGA Implementation of Hardware-Oriented Chaotic Boltzmann Machines

2020 
Boltzmann machines (BMs) are useful in various applications but are limited by their requirement to generate random numbers. In contrast, chaotic Boltzmann machines (CBMs) are neural networks that imitate the stochastic behavior of BMs with the chaotic dynamics and deterministic behavior, without random numbers. CBMs can potentially require fewer hardware resources than the original algorithms due to the unnecessity of random number generators. In this study, hardware-oriented algorithms and a differential multiply-accumulation operation are proposed to overcome the difficulties of implementing CBMs on field-programmable gate arrays (FPGAs). A hardware-oriented algorithm for CBMs, which includes fixed-point operations and shift operations, is proposed to reduce hardware resource utilization in the implemented circuits. In particular, the differential multiply-accumulate operation allows us to implement the multiply-accumulate operation with block random access memory and digital signal processors to reduce the consumption of lookup tables and flip-flops in FPGAs without losing the calculation speed. Our proposed approach was evaluated in numerical simulations, logical synthesis, and FPGA implementation. The calculation speed of FPGA-implemented CBMs was compared with software-implemented CBMs, which resulted in 1 / 6,500 of calculation time reduction in a 300-neuron CBM. Moreover, 2,048 neurons of CBM were realized by the logical synthesis. Therefore, the proposed hardware implementation of CBMs was shown to be feasible. The proposed CBMs can solve combinatorial optimization problems at a larger scale with fewer resources.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    2
    Citations
    NaN
    KQI
    []