Circular Kardar-Parisi-Zhang interfaces evolving out of the plane

2019 
: Circular KPZ interfaces spreading radially in the plane have Gaussian unitary ensemble (GUE) Tracy-Widom (TW) height distribution (HD) and Airy_{2} spatial covariance, but what are their statistics if they evolve on the surface of a different background space, such as a bowl, a mountain, or any surface of revolution? To give an answer to this, we report here extensive numerical analyses of several one-dimensional KPZ models on substrates whose size enlarges as 〈L(t)〉=L_{0}+ωt^{γ}, while their mean height 〈h〉 increases as usual [〈h〉∼t]. We show that the competition between the L enlargement and the correlation length (ξ≃ct^{1/z}) plays a key role in the asymptotic statistics of the interfaces. While systems with γ>1/z have HDs given by GUE and the interface width increasing as w∼t^{β}, for γ 1/z, the spatial covariances present a strong dependence on the parameters ω and γ, agreeing with Airy_{2} only for ω≫1, for a given γ, or when γ=1, for a fixed ω. These results considerably generalize our knowledge on 1D KPZ systems, unveiling the importance of the background space on their statistics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    4
    Citations
    NaN
    KQI
    []