Controlled Synthesis of MoxW1-xTe2 Atomic Layers with Emergent Quantum States.
2021
Recently, new states of matter like superconducting or topological quantum states were found in transition metal dichalcogenides (TMDs) and manifested themselves in a series of exotic physical behaviors. Such phenomena have been demonstrated to exist in a series of transition metal tellurides including MoTe2, WTe2, and alloyed MoxW1-xTe2. However, the behaviors in the alloy system have been rarely addressed due to their difficulty in obtaining atomic layers with controlled composition, albeit the alloy offers a great platform to tune the quantum states. Here, we report a facile CVD method to synthesize the MoxW1-xTe2 with controllable thickness and chemical composition ratios. The atomic structure of a monolayer MoxW1-xTe2 alloy was experimentally confirmed by scanning transmission electron microscopy. Importantly, two different transport behaviors including superconducting and Weyl semimetal states were observed in Mo-rich Mo0.8W0.2Te2 and W-rich Mo0.2W0.8Te2 samples, respectively. Our results show that the electrical properties of MoxW1-xTe2 can be tuned by controlling the chemical composition, demonstrating our controllable CVD growth method is an efficient strategy to manipulate the physical properties of TMDCs. Meanwhile, it provides a perspective on further comprehension and sheds light on the design of devices with topological multicomponent TMDC materials.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
55
References
0
Citations
NaN
KQI