Biomimetic 1-Aminocyclopropane-1-Carboxylic Acid Oxidase Ethylene Production by MIL-100(Fe)-Based Materials
2019
A novel core@shell hybrid material based on biocompatible hydroxyapatite nanoparticles (HA) and the well-known MIL-100(Fe) (Fe3O(H2O)2F(BTC)2·nH2O, BTC: 1,3,5-benzenetricarboxylate) has been prepared following a layer-by-layer strategy. The core@shell nature of the studied system has been confirmed by infrared, X-ray powder diffraction, N2 adsorption, transmission electron microscopy imaging, and EDS analyses revealing the homogeneous deposition of MIL-100(Fe) on HA, leading to HA@MIL-100(Fe) rod-shaped nanoparticles with a 7 nm shell thickness. Moreover, both MIL-100(Fe) and HA@MIL-100(Fe) have demonstrated to act as efficient heterogeneous catalysts toward the biomimetic oxidation of 1-aminocyclopropane-1-carboxylic acid into ethylene gas, a stimulator that regulates fruit ripening. Indeed, the hybrid material maintains the catalytic properties of pristine MIL-100(Fe) reaching 40% of conversion after only 20 min. Finally, the chemical stability of the catalyst in water has also been monitored for 21 day...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
29
References
2
Citations
NaN
KQI