Kinematics and timing of continental block deformation from margins to interiors
2017
During the deformation of continental blocks, the magnitude of tectonic stress generally decreases with increasing distance from the margin of the block. However, the timing and kinematics of stress transmission from the margins to the interiors of continents are poorly resolved, even though this information is critical to our understanding of the dynamics of continental deformation. Here, we present a case study of Mesozoic deformation of the North China Craton (NCC). Field investigations of Mesozoic thrust faults and folds, granitic intrusions and dykes, combined with zircon SHRIMP and LA–ICP–MS dating and muscovite 40Ar/39Ar plateau ages, reveal the age of the NE–SW-trending tectonic belts as ~180–155 Ma, where the deformation of the craton margin occurred 10–20 Ma earlier than that of the craton's interior. Although the kinematics of deformation are similar for the interior and the margin of the NCC, strain decreases with increasing distance from the margin. Notably, the bulk of the strain in the cratonic interior was focused in zones of pre-existing weakness. Overall, we determined that the NCC deformed under conditions of uniaxial compression, a conclusion that is compatible with simple rheological models, and that the stress magnitude attained in the cratonic interior was much less than that along its margin.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
46
References
17
Citations
NaN
KQI