Fabrication and electrochemical characterization of super-capacitor based on three-dimensional composite structure of graphene and a vertical array of carbon nanotubes:

2018 
We have demonstrated a three-dimensional composite structure of graphene and carbon nanotubes as electrodes for super-capacitors. The goal of this study is to fabricate and test the vertically grown carbon nanotubes on the graphene layer acting as a spacer to avoid self-aggregation of the graphene layers while realizing high active surface area for high energy density, specific capacitance, and power density. A vertical array of carbon nanotubes on silicon substrates was grown by a low-pressure chemical vapor deposition process using anodized aluminum oxide nanoporous template fabricated on silicon substrates. Subsequently, a graphene layer was grown by another low-pressure chemical vapor deposition process on top of a vertical array of carbon nanotubes. The Raman spectra confirmed the successful growth of carbon nanotubes followed by the growth of high-quality graphene. The average measured capacitance of the three-dimensional composite structure of graphene-carbon nanotube was 780 µFcm−2 at 100 mVs−1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    9
    Citations
    NaN
    KQI
    []