Morpho-sedimentary characteristics of the Quaternary Matiali fan and associated river terraces, Jalpaiguri, India: Implications for climatic controls
2014
Abstract The Matiali fan is a coarse-grained, small alluvial fan in the eastern Himalayan foothills. It co-exists side by side with the large Tista megafan and other Quaternary fluvial deposits, and has been affected by a number of young thrust faults. It is generally believed that tectonics is the main control in the deposition of these proximal fan–terrace systems. In this paper, geomorphologic and sedimentologic study of the Matiali fan and associated river terraces are combined with five OSL dates from these deposits to understand the succession of events and the forcing mechanism that shaped the geomorphology in the study area during late Quaternary time. Two aggradational terraces (T1 and T2; T2 > T1) occur within the river valleys incised on the Matiali fan. Three E–W scarps cross the fan surface, and they represent the steeper limb of the asymmetric fault-propagation folds formed over blind thrusts. These folds have deformed the fan (T3) and T2 terrace sediments, but the youngest T1 terrace deposits have remained undeformed. Sedimentological studies indicate continuous gradation from the coarsening-upwards mass-flow megagravel in the proximal part to the traction transported finer sheetflood gravels in the distal part, implying a continuous sedimentation history across the fan, uninterrupted by any evidence of syn-depositional tectonic movement. Poorly consolidated sandy gravels of the terraces indicate deposition through braided fluvial processes during a later period of sediment aggradation that filled up the incised river valleys. Previously published 14 C dates indicate that deposition of the Matiali fan started around 34 ka coinciding with a period of the intensified Indian summer monsoon of MIS-3. It is suggested that the fan was abandoned and river valleys incised during the LGM between 24 and 18 ka when the discharge decreased substantially. Increased rainfall and sediment supply, with their inherent fluctuations, during wetter periods of MIS-2 and MIS-1 since 12 ka probably resulted in the aggradation of T2 and T1 as shown by our OSL dates. OSL dates from the top of deformed T2 and base of undeformed T1 indicate that the Chalsa fold formed between ~ 11 and ~ 6 ka. Succession of geomorphic and deformational events reconstructed from this study and available age data indicate that the Matiali fan and terrace aggradation coincides with periods of increased monsoonal precipitation, whereas tectonic movements along blind thrusts of Chalsa and Matiali took place later, deforming the fan and older terrace deposits. The evidence unequivocally indicates, contrary to the prevalent notion of tectonic control of geomorphic features in the proximal mountain-front setting, that the deposition of the fan–terrace system was primarily controlled by the fluctuation of the Asian summer monsoon rather than Himalayan tectonics.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
68
References
25
Citations
NaN
KQI