Ultra-wide bandwidth 1.55 μm Lasers

1996 
This paper describes the essential elements for creating a practical wide bandwidth directly modulated laser source. This includes considerations of the intrinsic limitations of the laser structure, due to the resonant frequency and damping of the laser output, together with carrier transport issues to allow carriers in the device active region to be efficiently modulated at high speeds. The use of a P-doped compressively strained multiple-quantum well active region to provide high intrinsic speed and remove transport limitations will be described, together with record setting results of 25 GHz modulation bandwidth for a 1.55 μm Fabry-Perot laser and 26 GHz bandwidth for a 1.55 μm DFB laser. The challenges of providing high bandwidth electrical connections to the laser on a suitable submount, together with fiber attachment and microwave packaging are discussed. Results of fully packaged 1.55 μm DFB lasers with 25 GHz modulation bandwidth are shown. Digital modulation of the packaged 1.55 pm DFB including impedance matching is described, and the transient wavelength chirp is presented. This low chirp is reduced further using an optical filter, to provide a 10 GBit/s source with chirp similar to that of an external electroabsorption modulator.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []