Interfacial Energy-Controlled Top Coats for Gyroid/Cylinder Phase Transitions of Polystyrene-block-polydimethylsiloxane Block Copolymer Thin Films

2017 
Block copolymers (BCPs) with a high Flory–Huggins interaction parameter (χ) can form well-defined sub-10 nm periodic structures and can be used as a template for fabrication of various functional nanostructures. However, the large difference of surface energy between the blocks commonly found in high-χ BCPs makes it challenging to stabilize a useful gyroid morphology in thin film form. Here, we used an interfacial-energy-tailored top-coat on a blended film of a polystyrene-block-polydimethylsiloxane (PS-b-PDMS) BCP and a low-molecular-weight PDMS homopolymer with a hydrophilic end functional group. The top coat consisted of a random mixture of 40% hydrolyzed poly(vinyl acetate)-random-poly(vinly alcohol) (PVA-r-PVAc, PVA40) and PVAc homopolymer. At the optimized top-coat composition, gyroid nanostructures with sub-10 nm strut width were achieved down to ∼125 nm film thickness, which is only 3 times the lattice parameter of the gyroid structure. This is in marked contrast with a mixed morphology of gyroid ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    8
    Citations
    NaN
    KQI
    []