Determination of Phosphorylated Histone H2AX in Nanoparticle-Induced Genotoxic Studies

2019 
: DNA double-strand breaks (DSBs), one of the most severe lesions of DNA damage triggered by various genotoxic insults, can lead to chromosome change, genomic instability, and even tumorigenesis if not repaired efficiently. In response to DNA damage, histone H2AX molecules are rapidly phosphorylated at serine 139 near the site of DNA DSBs and form γ-H2AX foci. As an early important cellular event linked to DNA damage and repair, γ-H2AX is a highly sensitive biomarker for "monitoring" DNA damage and consequently is a useful tool in genetic toxicology screen. We and other researchers have used γ-H2AX as a marker to assess the potential genotoxic effects of some nanoparticles in vitro and in vivo. In this chapter, we describe several useful methods for γ-H2AX detection, which can be used to evaluate the potential genotoxic effects of nanoparticles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    3
    Citations
    NaN
    KQI
    []