H2dpa derivatives containing pentadentate ligands: An acyclic adjuvant potentiates meropenem activity in vitro and in vivo against metallo-β-lactamase-producing Enterobacterales.

2021 
Abstract The emergence and dissemination of metallo-β-lactamases (MBLs) producing Enterobacterales is a great concern for public health due to the limited therapeutic options. No MBL inhibitors are currently available in clinical practice. Herein, we synthesized a series of H2dpa derivatives containing pentadentate-chelating ligands and evaluated their inhibitory activity against MBLs. Related compounds inhibited clinically relevant MBLs (Imipenemase, New Delhi metallo-β-lactamase (NDM) and Verona integron-encoded metallo-β-lactamase) with IC50 values of 1–4.9 μM. In vitro, the most promising compounds, 5b and 5c, which had a chiral methyl at the acid adjacent to 5a, demonstrated potent synergistic activity against engineered strains, with fractional inhibitory concentration index values as low as 0.07–0.18. The addition of 5b and 5c restored meropenem efficacy against 42 MBL-producing Enterobacterales and Pseudomonas aeruginosa to satisfactory clinical levels. In addition, safety tests revealed that 5b/5c showed no toxicity in red blood cells, cell lines or mouse model. Further studies demonstrated that compounds 5b and 5c were non-competitive MBL inhibitors. In vivo compounds 5b and 5c potentiated meropenem efficacy and increased the survival rate from 0 to at least 83% in mice with sepsis caused by an NDM-1-positive clinical strain. The activity of the compounds exhibited consistency at the molecular, cellular, and in vivo levels. These data indicated that H2dpa derivatives 5b and 5c containing pentadentate-chelating ligands may be worthy of further study.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    0
    Citations
    NaN
    KQI
    []