Simulations for preliminary design of a multi-cathode DC electron gun for eRHIC

2010 
The proposed electron ion collider, eRHIC, requires a large average polarized electron current of 50 mA, which is more than 20 times higher than the present experimental output of a single, highly polarized electron source, based on cesiated super-lattice GaAs. To meet eRHIC's requirement for current, we designed a multicathode DC electron gun for injection. The twenty-four GaAs cathodes emit electrons in sequence, then are combined on axis by a rotating field (or 'funnelled'). In addition to its ultra-high vacuum requirements, the multicathode DC electron gun will place high demand on the electric field symmetry, the magnetic field shielding, and on preventing arcing. In this paper, we discuss our results from a 3D simulation of the latest model for this gun. The findings will guide the actual design in future. Their preliminary design of a multi-cathode electron source for eRHIC demonstrated tolerable fields and reasonable results in both field and particle simulations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []