Direct observation of double hydrogen transfer via quantum tunneling in a single porphycene molecule on a Ag(110) surface

2017 
Quantum tunneling of hydrogen atoms (or protons) plays a crucial role in many chemical and biological reactions. Although tunneling of a single particle has been examined extensively in various one-dimensional potentials, many-particle tunneling in high-dimensional potential energy surfaces remains poorly understood. Here we present a direct observation of a double hydrogen atom transfer (tautomerization) within a single porphycene molecule on a Ag(110) surface using a cryogenic scanning tunneling microscope (STM). The tautomerization rates are temperature independent below ∼10 K, and a large kinetic isotope effect (KIE) is observed upon substituting the transferred hydrogen atoms by deuterium, indicating that the process is governed by tunneling. The observed KIE for three isotopologues and density functional theory calculations reveal that a stepwise transfer mechanism is dominant in the tautomerization. It is also found that the tautomerization rate is increased by vibrational excitation via an inelast...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    39
    Citations
    NaN
    KQI
    []