SPECTRAL BREAKS OF ALFVÉNIC TURBULENCE IN A COLLISIONLESS PLASMA

2015 
Recent observations reveal that magnetic turbulence in the nearly colisionless solar wind plasma extends to scales smaller than the plasma microscales, such as ion gyroradius and ion inertial length. Measured breaks in the spectra of magnetic and density fluctuations at high frequencies are thought to be related to the transition from large-scale hydromagnetic to small-scale kinetic turbulence. The scales of such transitions and the responsible physical mechanisms are not well understood however. In the present work we emphasize the crucial role of the plasma parameters in the transition to kinetic turbulence, such as the ion and electron plasma beta, the electron to ion temperature ratio, the degree of obliquity of turbulent fluctuations. We then propose an explanation for the spectral breaks reported in recent observations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    29
    Citations
    NaN
    KQI
    []