基于Nafion与硫堇离子交换行为的NADH生物传感器的构建与性能评价 Construction and Evaluation of NADH Biosensor Based on Ion-Exchange Behavior between Nafion and Thionine

2015 
以Nafion为离子交换材料,通过离子交换的方法制备了硫堇(Thionine, TH)/有序介孔碳(Ordered mesoporous carbon, OMC)复合材料修饰玻碳电极(Glassy carbon electrode, GCE),用电化学方法对该修饰电极进行了详细表征,在循环伏安曲线上可以观察到硫堇的一对可逆的氧化还原峰,证明硫堇已经被成功的固定到电极表面;对修饰电极的动力学研究表明电极过程是受表面控制。利用此修饰电极,0 V电位下即可以实现对烟酰胺腺嘌呤二核苷酸(Nicotinamide adenine dinucleotide, NADH)的安培检测,线性范围可达1 × 10−6 mol∙L−1~6 × 10−4 mol∙L−1,检出限达到1 × 10−7 mol∙L−1 (信噪比为3),并且能很好的消除尿酸、多巴胺以及对乙酰氨基酚(p-acetamidophenol, AP)的干扰,有希望成为有应用价值的NADH传感器。 Thionine/OMC/GCE was prepared by ion-exchange procedure. Electrochemical behaviors of the resulting electrode were investigated thoroughly with cyclic voltammetry, and a well-defined redox couple was clearly visualized. Under a lower operation potential of 0 V in 0.1 mol∙L−1 PBS (pH 7.0), NADH could be detected linearly up to a concentration of 1 × 10−6 mol∙L−1~6 × 10−4 mol∙L−1 mol∙L−1 with an extremely lower detection limit of 1 × 10−7 mol∙L−1 estimated (S/N = 3). The feasibility for simultaneous determination of uric acid, dopamine, AP and NADH was discussed. They did not in-terfere with each other in certain concentration. Based on the results, a new NADH sensor was successfully established using the PTH/OMC/GCE.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []