Exposure to both formaldehyde and high relative humidity exacerbates allergic asthma by activating the TRPV4-p38 MAPK pathway in Balb/c mice

2019 
Abstract Some studies have indicated that formaldehyde, a ubiquitous environmental pollutant, can induce or aggravate allergic asthma. Epidemiological studies have also shown that the relative humidity indoors may be an independent and a key factor associated with the aggravation of allergic asthma. However, the synergy of humidity and formaldehyde on allergic asthma and the mechanism underlying this effect remain largely unknown. In this study, we aim to determine the effect of high relative humidity and/or formaldehyde exposure on allergic asthma and explore the underlying mechanisms. Male Balb/c mice were modeled with ovalbumin (OVA) and exposure to 0.5 mg/m3 formaldehyde and/or different relative humidity (60%/75%/90%). Histopathological changes, pulmonary function, Th1/Th2 balance, the status of mucus hypersecretion and the levels of inflammatory factors were detected to assess the exacerbation of allergic asthma. The levels of the transient receptor potential vanilloid 4 (TRPV4), calcium ion and the activation of p38 mitogen-activated protein kinases (p38 MAPK) were detected to explore the underlying mechanisms. The results showed that exposure to high relative humidity or to 0.5 mg/m3 formaldehyde alone had a slight, but not significant, affect on allergic asthma. However, the pathological response and airway hyperresponsiveness (AHR) were greatly aggravated by simultaneous exposure to 0.5 mg/m3 formaldehyde and 90% relative humidity. Blocking TRPV4or p38 MAPK using HC-067047 and SB203580 respectively, effectively alleviated the exacerbation of allergic asthma induced by this simultaneous exposure to formaldehyde and high relative humidity. The results show that when formaldehyde and high relative humidity are present this can enhance the activation of the TRPV4 ion channel in the lung leading to the aggravation of the p38 MAPK activation, resulting in the exacerbation of inflammation and hypersecretion of mucus in the airways.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    4
    Citations
    NaN
    KQI
    []