Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos.

2012 
We investigated and compared nanosize Ag spheres, plates, and wires in a fish gill epithelial cell line (RT-W1) and in zebrafish embryos to understand the mechanism of toxicity of an engineered nanomaterial raising considerable environmental concern. While most of the Ag nanoparticles induced N-acetyl cysteine sensitive oxidative stress effects in RT-W1, Ag nanoplates were considerably more toxic than other particle shapes. Interestingly, while Ag ion shedding and bioavailability failed to comprehensively explain the high toxicity of the nanoplates, cellular injury required direct particle contact, resulting in cell membrane lysis in RT-W1 as well as red blood cells (RBC). Ag nanoplates were also considerably more toxic in zebrafish embryos in spite of their lesser ability to shed Ag into the exposure medium. To elucidate the “surface reactivity” of Ag nanoplates, high-resolution transmission electron microscopy was performed and demonstrated a high level of crystal defects (stacking faults and point defe...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    276
    Citations
    NaN
    KQI
    []