Aripiprazole protects cortical neurons from glutamate toxicity

2011 
Abstract Neurodegeneration is thought to be a component of schizophrenia pathology, and some antipsychotics appear to slow degenerative changes in patients. Aripiprazole, the first partial dopamine D 2 receptor agonist approved for the treatment of schizophrenia, is suggested to be neuroprotective based on non-clinical studies using transformed cell lines and in vivo stress and lesion paradigms. However, aripiprazole-induced neuroprotection has not been studied in a neuronal glutamate toxicity assay, which may model aspects of neurodegeneration occurring in schizophrenia. This study examined whether therapeutically relevant concentrations of aripiprazole protect rat embryonic cortical neurons from glutamate toxicity in biochemical and high-content imaging assays. Aripiprazole inhibited glutamate-induced neurotoxicity by 40% in a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, in contrast to risperidone and olanzapine, which had little neuroprotective activity. This neuroprotective effect of aripiprazole was not mediated by the activation of serotonin 5-HT 1A or dopamine D 2 receptors, Akt or glycogen-synthase kinase-3β signaling (GSK-3β), or through the inhibition of poly-ADP ribose polymerase (PARP). Further experiments are required to determine the biochemical nature of aripiprazole-induced neuroprotection and whether any such activity might have clinical relevance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    20
    Citations
    NaN
    KQI
    []