Impacts of MAPbBr3 Additive on Crystallization Kinetics of FAPbI3 Perovskite for High Performance Solar Cells

2021 
Blending perovskite with different cations has been successful in improving performance of perovskite solar cells, but the complex pathway of perovskite crystal formation remains a mystery, hindering its further development. In this paper, the detailed crystallization process of formamidinium lead iodide (FAPbI3) perovskite films doped by methylammonium lead bromide (MAPbBr3) additive was investigated by in situ grazing incident wide-angle X-ray scattering measurements during both spin coating and annealing. During spin-coating, it was found that the FAPbI3 perovskite precursor easily formed a mixture of black perovskite phase (α phase) and non-perovskite yellow phase (δ phase) after the addition of MAPbBr3, whereas only δ phase formed without MAPbBr3. The δ phase gradually converted to α phase during annealing and there was only α phase left in both films with and without MAPbBr3. However, the doped films presented high film quality without PbI2 residue in contrast to the undoped films. These findings imply that the MAPbBr3 additive can effectively suppress the formation of the unfavorable δ phase and trigger the formation of the optically active α phase even during spin-coating, which enhances the film quality possibly by removing the energy barriers from δ phase to α phase at room temperature. Finally, PSCs based on MAPbBr3-doped FAPbI3 were fabricated with a champion efficiency as high as 19.4% from 14.2% for the PSCs based on undoped FAPbI3.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []