language-icon Old Web
English
Sign In

BORON NITRIDE NANOTUBES

1998 
Abstract Pure boron nitride (BN) nanotubes have been synthesised by arc discharge between HfB2 electrodes in a nitrogen atmosphere. The high resolution electron microscopy (HREM) observations reveal that this route leads to the formation of highly crystalline tubes with reduced numbers of layers, including tubes with only one or two layers. These nanotubes are found to be chiral or non-chiral, however, a preference towards the armchair and zig-zag configurations is suggested. Electron energy loss spectroscopy yields a B:N ratio of approximately one and a perfect chemical homogeneity. Tubes are empty and closed at their ends by flat layers perpendicular to the tube axis. A tip model consisting of a triangular facet based on three 120 ° disclinations and preserving BN bonds in the honeycomb network accounts for the observations. Finally, preliminary electron irradiation experiments on these tubes reveal a specific behaviour. BN tubes transform into aggregates of small cages with diameter between 0.5 and 0.8 nm. These diameters suggest that these shells might be B12N12, B16N16 and B28N28 fullerenes which were predicted to be magic clusters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    139
    Citations
    NaN
    KQI
    []