Deep learning-based cytometer using magnetically modulated coherent imaging

2020 
We present a high-throughput and cost-effective computational cytometer for rare cell detection, where the target cells are specifically labeled with magnetic particles and exhibit an oscillatory motion under a periodically-changing magnetic field. The time-varying diffraction patterns of the oscillating cells are then captured with a holographic imaging system and are further classified by a customized pseudo-3D convolutional network. To evaluate the performance of our technique, we detected serially-diluted MCF7 cancer cells that were spiked in whole blood, achieving a limit of detection (LoD) of 10 cells per 1 mL of whole blood.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []