BdPUL12 depolymerizes β-mannan-like glycans into mannooligosaccharides and mannose, which serve as carbon sources for Bacteroides dorei and gut probiotics.

2021 
Abstract Symbiotic bacteria, including members of the Bacteroides genus, are known to digest dietary fibers in the gastrointestinal tract. The metabolism of complex carbohydrates is restricted to a specified subset of species and is likely orchestrated by polysaccharide utilization loci (PULs) in these microorganisms. β-Mannans are plant cell wall polysaccharides that are commonly found in human nutrients. Here, we report the structural basis of a PUL cluster, BdPUL12, which controls β-mannan-like glycan catabolism in Bacteroides dorei. Detailed biochemical characterization and targeted gene disruption studies demonstrated that a key glycoside hydrolase, BdP12GH26, performs the initial attack on galactomannan or glucomannan likely via an endo-acting mode, generating mannooligosaccharides and mannose. Importantly, coculture assays showed that the B. dorei promoted the proliferation of Lactobacillus helveticus and Bifidobacterium adolescentis, likely by sharing mannooligosaccharides and mannose with these gut probiotics. Our findings provide new insights into carbohydrate metabolism in gut-inhabiting bacteria and lay a foundation for novel probiotic development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    0
    Citations
    NaN
    KQI
    []