Influence of catalyst shape on methane steam reforming and simulation of industrial reactor

2016 
Methane steam reforming (MSR) is the most widely used technology for hydrogen production in industry now, where the shape of catalyst particles and the reactor operating conditions greatly influence the reactor performance and the product composition. Firstly, the present study investigated the effect of catalyst shape (sphere, cylinder and ring) on the MSR using a diffusion-reaction model on the particle scale. The effectiveness factors of shaped catalysts followed the sequence: cylinder < sphere < ring. Next, a one-dimensional mathematical model was developed by taking into account the mass, heat and momentum transfer on the reactor scale together with the diffusion-reaction equations on the catalyst scale, and used to describe an industrial MSR reactor. The effects of inlet temperature and pressure on the profiles of temperature and pressure inside the reactor, effectiveness factor, conversion of methane as well as concentration of various species were studied. Finally, the optimal inlet temperature and pressure for the industrial reactor were determined, being 773 K and 3 MPa, respectively.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []