Pyrolysis and combustion of cellulose. VII. Thermal analysis of the phosphorylation of cellulose and model carbohydrates during pyrolsis in the presence of aromatic phosphates and phosphoramides

1980 
Thermal gravimetric analysis, differential scanning calorimetry, and derivative thermal gravimetric analysis were utilized to characterize the thermal interactions between cellulose, 1-6, anhydro β-D-glucopyranoside, and D-glucose and model phosphate and phosphoramide flame retardants. The phosphoramides induced higher char yields than the phosphates during the pyrolysis of the mixtures of carbohydrates and organophosphorus compounds. Exothermic reactions attributed to phosphorylation and char formation were observed with each of the phosphoramide/carbohydrate mixtures and were absent with the phosphates. The individual phosphorus compounds studied showed similar thermal behavior with each of the carbohydrates indicating that the mode of interaction for these mixtures was similar. Isothermal gravimetric analysis of the organophosphorus/carbohydrate mixtures was used to measure the rate of decomposition weight loss from isothermal conditions. This weight loss was used as an indication of rate of fuel formation. The kinetics observed for these measurements indicated that the phosphoramide mixtures underwent a rapid weight loss to a final char with an effective Eact of about 55 kcal/mol while the phosphate mixtures exhibited effective Eact′s for decomposition lower than those observed for the pure carbohydrates. Mixtures of glucose with selcted arylphosphoramide esters were pyrolysed in order to determine the effect of lability of the leaving group on char formation. Gas chromatographic analysis of the pyrolysis products indicated that phenol was the favored leaving group in comparison with aniline units, but char promotion appeared to be dependent on the number of P-N bonds present in the original phosphoramide. Electron spectroscopy for chemical analysis indicated that chemically similar chars were obtained from the different organophosphorus/carbohydrate combinations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    47
    Citations
    NaN
    KQI
    []