Reporter‐based fate mapping in human kidney organoids confirms nephron lineage relationships and reveals synchronous nephron formation
2019
Abstract Nephron formation continues throughout kidney morphogenesis in both mice and humans. Lineage tracing studies in mice identified a self‐renewing Six2‐expressing nephron progenitor population able to give rise to the full complement of nephrons throughout kidney morphogenesis. To investigate the origin of nephrons within human pluripotent stem cell‐derived kidney organoids, we performed a similar fate‐mapping analysis of the SIX2‐expressing lineage in induced pluripotent stem cell (iPSC)‐derived kidney organoids to explore the feasibility of investigating lineage relationships in differentiating iPSCs in vitro . Using CRISPR/Cas9 gene‐edited lineage reporter lines, we show that SIX2‐expressing cells give rise to nephron epithelial cell types but not to presumptive ureteric epithelium. The use of an inducible (CreERT2) line revealed a declining capacity for SIX2 + cells to contribute to nephron formation over time, but retention of nephron‐forming capacity if provided an exogenous WNT signal. Hence, while human iPSC‐derived kidney tissue appears to maintain lineage relationships previously identified in developing mouse kidney, unlike the developing kidney in vivo , kidney organoids lack a nephron progenitor niche capable of both self‐renewal and ongoing nephrogenesis.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
38
References
26
Citations
NaN
KQI