Multiproxy analysis of a new terrestrial and a marine Cretaceous-Paleogene (K-Pg) boundary site from New Zealand

2011 
An integrated study of palynology, Mossbauer spectroscopy, mineralogy and osmium isotopes has led to the detection of the first K-Pg boundary clay layer in a Southern Hemisphere terrestrial setting. The K-Pg boundary layer was independently identified at centimetre resolution by all the above mentioned methods at the marine K-Pg boundary site of mid-Waipara and the terrestrial site of Compressor Creek (Greymouth coal field), New Zealand. Mossbauer spectroscopy shows an anomaly of Fe-containing particles in both K-Pg boundary sections: jarosite at mid-Waipara and goethite at Compressor Creek. This anomaly coincides with a turnover in vegetation indicated by an interval dominated by fern spores and extinction of key pollen species in both sections. In addition to the terrestrial floristic changes, the mid-Waipara section reveals a turnover in the dinoflagellate assemblages and the appearance of global earliest Danian index species. Geochemical data reveal relatively small iridium enrichments in the boundary layers of 321 pg/g at mid-Waipara and 176 pg/g at Compressor Creek. Unradiogenic Os-187/Os-188 values of the boundary clay reveal the presence of a significant extraterrestrial component. We interpret the accumulation of Fe nano-phases at the boundary as originating from both the impactor and the crystalline basement target rock. The goethite and jarosite are interpreted as secondary phases formed by weathering and diagenesis. The primary phases were probably controlled by the initial composition of the vapor plume and condensation kinetics rather than condensation thermodynamics. This investigation indicates that identification of Fe in nano-phases by Mossbauer spectroscopy is an accurate and cost-effective method for identifying impact event horizons and it efficiently complements widely used biostratigraphic and geochemical methods. (C) 2010 Elsevier Ltd. All rights reserved. (Less)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    99
    References
    32
    Citations
    NaN
    KQI
    []