Impact of Polymer-Bound Iodine on Fibronectin Adsorption and Osteoblast Cell Morphology in Radiopaque Medical Polymers: Tyrosine-Derived Polycarbonate Blends as a Model System

2009 
Imaging of polymer implants during surgical implantations is challenging in that most materials lack sufficient X-ray contrast. Synthetic derivatization with iodine serves to increase the scattering contrast but results in distinct physicochemical properties in the material which influence subsequent protein adsorption and cell morphology behavior. Herein we report the impact of increasing iodine inclusion on the cell morphology (cell area and shape) of MC3T3-E1 osteoblasts on a series of homopolymers and discrete blend thin films of poly(desaminotyrosyl tyrosine ethyl ester carbonate), poly(DTE carbonate), and an iodinated analogue poly(I2-DTE carbonate). Cell morphology is correlated to film chemical composition via measuring fibronectin (FN) adhesion protein adsorption profile on these films. FN exhibits up to 2-fold greater adsorption affinity for poly(I2-DTE carbonate) than (poly(DTE carbonate)). A correlation was established between cell area, roundness, and the measured FN adsorption profile on the...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    24
    Citations
    NaN
    KQI
    []