Improved Collaborative Filtering Using Entropy Weighting
2013
In this paper, we evaluate performance of existing similarity measurement metric and propose a novel method using user’s preferences information entropy to reduce MAE in memory-based collaborative recommender systems. The proposed method applies a similarity of individual inclination to traditional similarity measurement methods. We experiment on various similarity metrics under different conditions, which include an amount of data and significance weighting from n/10 to n/60, to verify the proposed method. As a result, we confirm the proposed method is robust and efficient from the viewpoint of a sparse data set, applying existing various similarity measurement methods and Significance Weighting.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI